Identification of evolving fuzzy rule-based models

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of evolving fuzzy rule-based models

An approach to identification of evolving fuzzy rule-based (eR) models is proposed in this paper. eR models implement a method for the noniterative update of both the rule-base structure and parameters by incremental unsupervised learning. The rule-base evolves by adding more informative rules than those that previously formed the model. In addition, existing rules can be replaced with new rule...

متن کامل

Visualization of evolving fuzzy rule-based systems

Evolving fuzzy systems are data-driven fuzzy (rule-based) systems supporting an incremental mode of model adaptation in dynamically changing environments; typically, such models are learned on a continuous stream of data in an online manner. This paper advocates the use of visualization techniques in order to help a user gain insight into the process of model evolution. More specifically, dynam...

متن کامل

Rule Chains for Visualizing Evolving Fuzzy Rule-Based Systems

Evolving fuzzy systems are data-driven fuzzy (rule-based) systems supporting an incremental model adaptation in dynamically changing environments; typically, such models are learned on a continuous stream of data in an online manner. This paper advocates the use of visualization techniques in order to help a user gain insight into the process of model evolution. More specifically, rule chains a...

متن کامل

Evolving fuzzy rule based controllers using genetic algorithms

The synthesis of genetics-based machine learning and fuzzy logic is beginning to show promise as a potent tool in solving complex control problems in multi-variate non-linear systems. In this paper an overview of current research applying the genetic algorithm to fuzzy rule based control is presented. A novel approach to genetics-based machine learning of fuzzy controllers, called a Pittsburgh ...

متن کامل

Identifying Rule-Based TSK Fuzzy Models

ABSTRACT: This article presents a rule-based fuzzy model for the identification of nonlinear MISO (multiple input, single output) systems. The presented method of fuzzy modeling consists of two parts: (1) structure modeling, i.e., the determination of the number of rules and input variables involved respectively, and (2) parameter optimization, i.e., the optimization of the location and form of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Fuzzy Systems

سال: 2002

ISSN: 1063-6706

DOI: 10.1109/tfuzz.2002.803499